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A.1.1 Gradient en coordonnées cartésiennes

@ Champ scalaire : un champ scalaire f est une fonction scalaire du
vecteur position r : f = f (r)

@ Vecteur position : en coordonnées cartésiennes dans le repere
(0,%,9,2)
r(z,y,z2)=x&+yyg+z2 (A.1)
@ Vecteur déplacement infinitésimal : en coordonnées cartésiennes
dr (r,y,z) =dex& +dyg+dz 2 (A.2)

o Différentielle du champ scalaire : f (x,y, z) en coordonnées
cartésiennes

ox oy 0z

o Différentielle du champ scalaire : f (x,y,2) (A.3) remis en forme

of (5.y.2) = (6’f (g;jy,Z) 5 O (gjyy,Z) g1 (fg;y,Z) Z) "

(dxZ+dyy+dz2)

dz (A.3)
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A.1.1 Gradient en coordonnées cartésiennes

o Différentielle du champ scalaire : f (x,y, z) comme produit scalaire

_df (x,y, 2)
dr(z,y, 2)

df (:E,y,z) - dr (xvya Z) = Vf(w,y,Z) -dr (.CU,y,Z) (A5)

e Gradient du champ scalaire : f (x,y,2) (A.2) dans (A.4) et (A.5)

V ey = (g;jy,Z) 5 9 (ﬂ(;jyy, 2) 54 9f (g;y, 2) & (A'6)j

@ Opérateur gradient : en coordonnées cartésiennes

.0 .0 e,

@ Opérateur gradient : vecteur ligne en coordonnées cartésiennes

o 0 0
V= (8%’ 8y’8z)
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A.1.2 Gradient de champs scalaires homogene et unidimensionnel EPFL

@ Champ scalaire homogene : f (z,y, z) indépendant de la position et de
ses coordonnées.

f(x,y,z) = fo = cste (homogene) (A.8)

o Gradient du champ scalaire homogene : (A.6) ou f (x,y,2) = fo

Vi) = Vo= e D0 g4 a0 (A-9)j

@ Champ scalaire unidimensionnel : f (z,y, z) indépendant de y et z.
f(x,y,2) = f(x) (unidimensionnel) (A.10)

e Gradient du champ scalaire unidimensionnel : (A.6)

ou f(z,y,2) = f(x)

Vf(zyz2)=Vf(r)=

T (unidimensionnel) (A.ll)J
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A.2.1 Divergence en coordonnées cartésiennes

@ Champ vectoriel : un champ vectoriel f est une fonction vectorielle du
vecteur position r : f = f (r). Chaque composante cartésienne est une
fonction des coordonnées cartésiennes (x,y, z) du vecteur position 7 :

f(a:,y,z) = fa (:c,y,z) d}""fy (ZU,y,Z) Y+ f. (a:,y,z) Z (A.12)

e Divergence du champ vectoriel : f (x,y, z) en coordonnées
cartésiennes (A.7) et (A.12)

.0 .0 0

(A.13)
. (fa: (x,y,z‘) ﬁ:+fy (az,y,z) U+ f. (:c,y,z) 2)

o Divergence du champ vectoriel : f (z,y, z) (A.13) remis en forme

T e £l = 22 (;;y’z) + 9 (g?;y’z) o S (g;y’z) (A.13)j

Dr. Sylvain Bréchet Gradient, divergence et théoreme de la divergence



A.2.2 Divergence de champs vectoriels uniforme et unidimensionnel EPFL

@ Champ vectoriel uniforme : f (z,y, z) indépendant de la position et de
ses coordonnées.

f(z,y,2) = fo = fox &+ fo, U+ fo. 2 = cste (uniforme)  (A.14)

o Divergence du champ vectoriel uniforme : (A.13) ou f (x,y,2) = fo

8f0$ any afOz .
st o T os =" (A.lS)J

@ Champ vectoriel unidimensionnel : f (z,y, z) indépendant de y et z.

Vf(il?,y,Z):VfOZ

f(x,y,2) = fo(x) @ (unidimensionnel) (A.16)

e Divergence du champ vectoriel unidimensionnel : (A.13)

ot f (2,9,2) = fo (2) @

_ df (o)
- dx

V@)=V (fo(2) ) (unidimensionnel) (A.17)J
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A.3.1 Laplacien en coordonnées cartésiennes

o Opérateur Laplacien : divergence de |'opérateur gradient (A.7)

0 0 0 0 0 0
) — +Z2— | (T=—+Y—=— Al
V?=V.V = ( 8x+y3y+zﬁz> ($6x+yay+ 8z)( 8)
o Opérateur Laplacien : (A.18) en coordonnées cartésiennes

2 2 2
veo 9 L0 O (A.19)J

Jx?  0y? 0z

e Laplacien du champ scalaire : f (z,y,2) (A.19)

2 2 2
V2 f (2., 2) = 0 féa;,zy,Z) L9 f((?a;;y,Z) L9 féa;y, z) (A'2O)J
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A.3.2 Laplacien de champs scalaires homogene et unidimensionnel

Champ scalaire homogeéne : f (z,y, z) indépendant de la position et de
ses coordonnées.

f(xz,y,z) = fo = cste (homogene) (A.8)

Laplacien du champ scalaire homogene : (A.20) ou f (x,y,2) = fo

fo  0fo , P*fo
o> " o2 T2 ) (A'Ql)}

Champ scalaire unidimensionnel : f (z,y, z) indépendant de y et z.

V2 f(xvywz) :V2f0 —

f(x,y,2) = f(x) (unidimensionnel) (A.10)

Laplacien du champ scalaire unidimensionnel : (A.20)

ou f(z,y,2) = f(x)

V2 f(x,y,2)=Vf(x)= (unidimensionnel) (A.22)J

Dr. Sylvain Bréchet Gradient, divergence et théoreme de la divergence

EPFL
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A.4.1 Cube infinitésimal

@ Systeme local : cube de volume infinitésimal centré autour du point x
engendré par les vecteurs infinitésimaux orthogonaux dx, dxs et dxs.

dx,

dx,

© Centres faces : avant (+) et arriere (—)

1 1
x + 5 dr, = x + 5 dri &1 (A.23)

© Centres faces : droite (+) et gauche (—)
x + % diBQ = x + % dajg @2 (A24)

© Centres faces : supérieure (+) et inférieure (—)

1 1
x + 5 diL‘g —x + 5 d:l]g 533 (A25)
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A.4.1 Cube infinitésimal

@ Volume : cube infinitésimal centré autour du point x

dV (x) = dxy dxo dxs . (A.26)
dz,

© Surface faces : avant (+) et arriere (—)

s (w + %dcm) — +dS; = +dS, &1 = + dws dzs &1 (A.27)
© Surface faces : droite (+) et gauche (—)

dS (az + % dwg) = +dSe = +dS2 &2 = £ dxs dx: &2 (A.28)
© Surface faces : supérieure (+) et inférieure (—)

s (m + %dw:;) — +dS; = +dS; &5 = + dr1 das @5 (A.29)
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A.4.2 Flux infinitésimal

@ Flux total : le flux total du champ vectoriel f () a travers le cube
infinitésimal centré en x est la somme des flux a travers les six faces.

dx,

dz,

dx,

@ Flux total : du champ vectoriel f (x) a travers le cube infinitésimal.

f(x)-dS (z) = (A.30)

1
f(w—kldml) -dS(zn—l—ldacl)—l—f(a:— 1oi:131> -dS(:B— —dw1>
2 2 2 2
1 1 1 1
+f<a:+§da:2> -dS(w+§dw2)+f(a:— §dw2) -dS(zL'— deg)

1 1 1 1
+f(w+§dm3) dS(m—I—idmg) —I—f(JI— §d$3> dS(iB— 561(133)
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A.4.2 Flux infinitésimal

dx,

e— — — o

e — |- —

dx;,

@ Flux total : du champ vectoriel f (x) : (A.23) - (A.29) dans (A.30)

(A.31)
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A.4.2 Flux infinitésimal

dx,

dx,

@ Développement limité : au 1° ordre du champ vectoriel f autour de x

1 Of (x)

1 =, _
f(:vj:§d:c1:n1) —f(w)iz axl dl‘l
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A.4.2 Flux infinitésimal

dx,

@ Flux total : champ vectoriel f (x) : (A.32) dans (A.31) donne (A.33)
%,

@) as@) - (2125, 21D 5, O

@ Flux total : champ vectoriel f(x) = f1 () &1 + fo () &2 + f3 () T3 :
(A.26) dans (A.33)

F(z)-dS (z) = <3f1 (x)  Of(x)  Ofs(x)

. ii‘g) dxl dwg diEg

) dxl dxg dil?g

011 Oz Oxs
@ Flux total : remis en forme
3
0 i \ L
f(x) -dS (x) = (Z J;gg )> dV (x) (A.34)
i=1 ¢
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A.4.3 Théoreme de la divergence

@ Flux total :

3

f(xz)-dS (z)= (Z 8]‘5513)) dV (x) (A.34)

1=1

o Divergence : du champ vectoriel f (x)

V. f () = Z 8";5;’) (A.35)

@ Théoreme local de la divergence : du champ vectoriel f (x) :
(A.35) dans (A.34)

f(x)-dS (z) = (v f (:13)) dV (z) (A.36) J

Ce théoreme est indépendant du choix de coordonnées (cartésiennes,
cylindriques ou sphériques), car il est exprimé en termes de produits
scalaires de vecteurs.
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A.4.3 Théoreme de la divergence

dSs
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o Théoreme global de la divergence : du champ vectoriel f (x) :
intégration de (A.36) sur le systeme global

/S f(x) - dS (z) = /V (V-f @)V (@) (A.37)J

@ Flux total : I'intégration se fait sur I'ensemble du systeme global qui est
constitué d'un continuum de cubes de volume infinitésimal dV'. Les flux a
travers toutes les faces des cubes a I'intérieur du systeme global
s'annulent deux a deux. Ainsi, seuls les flux a travers les faces des cubes
qui se trouvent sur I'enceinte du systéme contribuent au flux global.
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