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Carl Friedrich Gauss, 1777-1855

Dr. Sylvain Bréchet Gradient, divergence et théorème de la divergence 1 / 21
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A.1.1 Gradient en coordonnées cartésiennes

Champ scalaire : un champ scalaire f est une fonction scalaire du
vecteur position r : f ≡ f (r)

Vecteur position : en coordonnées cartésiennes dans le repère
(O, x̂, ŷ, ẑ)

r (x, y, z) = x x̂+ y ŷ + z ẑ (A.1)

Vecteur déplacement infinitésimal : en coordonnées cartésiennes

dr (x, y, z) = dx x̂+ dy ŷ + dz ẑ (A.2)

Différentielle du champ scalaire : f (x, y, z) en coordonnées
cartésiennes

df (x, y, z) =
∂f (x, y, z)

∂x
dx+

∂f (x, y, z)

∂y
dy +

∂f (x, y, z)

∂z
dz (A.3)

Différentielle du champ scalaire : f (x, y, z) (A.3) remis en forme

df (x, y, z) =

(
∂f (x, y, z)

∂x
x̂+

∂f (x, y, z)

∂y
ŷ +

∂f (x, y, z)

∂z
ẑ

)
· (dx x̂+ dy ŷ + dz ẑ)

(A.4)
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A.1.1 Gradient en coordonnées cartésiennes

Différentielle du champ scalaire : f (x, y, z) comme produit scalaire

df (x, y, z) =
df (x, y, z)

dr (x, y, z)
· dr (x, y, z) ≡ ∇ f (x, y, z) · dr (x, y, z) (A.5)

Gradient du champ scalaire : f (x, y, z) (A.2) dans (A.4) et (A.5)

∇ f (x, y, z) =
∂f (x, y, z)

∂x
x̂+

∂f (x, y, z)

∂y
ŷ +

∂f (x, y, z)

∂z
ẑ (A.6)

Opérateur gradient : en coordonnées cartésiennes

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(A.7)

Opérateur gradient : vecteur ligne en coordonnées cartésiennes

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
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A.1.2 Gradient de champs scalaires homogène et unidimensionnel

Champ scalaire homogène : f (x, y, z) indépendant de la position et de
ses coordonnées.

f (x, y, z) = f0 = cste (homogène) (A.8)

Gradient du champ scalaire homogène : (A.6) où f (x, y, z) = f0

∇ f (x, y, z) = ∇ f0 =
∂f0
∂x

x̂+
∂f0
∂y

ŷ +
∂f0
∂z

ẑ = 0 (A.9)

Champ scalaire unidimensionnel : f (x, y, z) indépendant de y et z.

f (x, y, z) = f (x) (unidimensionnel) (A.10)

Gradient du champ scalaire unidimensionnel : (A.6)
où f (x, y, z) = f (x)

∇ f (x, y, z) = ∇ f (x) =
df (x)

dx
x̂ (unidimensionnel) (A.11)
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A.2.1 Divergence en coordonnées cartésiennes

Champ vectoriel : un champ vectoriel f est une fonction vectorielle du
vecteur position r : f ≡ f (r). Chaque composante cartésienne est une
fonction des coordonnées cartésiennes (x, y, z) du vecteur position r :

f (x, y, z) = fx (x, y, z) x̂+ fy (x, y, z) ŷ + fz (x, y, z) ẑ (A.12)

Divergence du champ vectoriel : f (x, y, z) en coordonnées
cartésiennes (A.7) et (A.12)

∇ · f (x, y, z) =

(
x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
·
(
fx (x, y, z) x̂+ fy (x, y, z) ŷ + fz (x, y, z) ẑ

) (A.13)

Divergence du champ vectoriel : f (x, y, z) (A.13) remis en forme

∇ · f (x, y, z) =
∂fx (x, y, z)

∂x
+

∂fy (x, y, z)

∂y
+

∂fz (x, y, z)

∂z
(A.13)
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A.2.2 Divergence de champs vectoriels uniforme et unidimensionnel

Champ vectoriel uniforme : f (x, y, z) indépendant de la position et de
ses coordonnées.

f (x, y, z) = f0 = f0x x̂+ f0y ŷ + f0z ẑ = cste (uniforme) (A.14)

Divergence du champ vectoriel uniforme : (A.13) où f (x, y, z) = f0

∇ · f (x, y, z) = ∇ · f0 =
∂f0x
∂x

+
∂f0y
∂y

+
∂f0z
∂z

= 0 (A.15)

Champ vectoriel unidimensionnel : f (x, y, z) indépendant de y et z.

f (x, y, z) = fx (x) x̂ (unidimensionnel) (A.16)

Divergence du champ vectoriel unidimensionnel : (A.13)
où f (x, y, z) = fx (x) x̂

∇ · f (x, y, z) = ∇ ·
(
fx (x) x̂

)
=

dfx (x)

dx
(unidimensionnel) (A.17)
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A.3.1 Laplacien en coordonnées cartésiennes

Opérateur Laplacien : divergence de l’opérateur gradient (A.7)

∇2 = ∇·∇ =

(
x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
·
(
x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
(A.18)

Opérateur Laplacien : (A.18) en coordonnées cartésiennes

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(A.19)

Laplacien du champ scalaire : f (x, y, z) (A.19)

∇2 f (x, y, z) =
∂2f (x, y, z)

∂x2
+

∂2f (x, y, z)

∂y2
+

∂2f (x, y, z)

∂z2
(A.20)
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A.3.2 Laplacien de champs scalaires homogène et unidimensionnel

Champ scalaire homogène : f (x, y, z) indépendant de la position et de
ses coordonnées.

f (x, y, z) = f0 = cste (homogène) (A.8)

Laplacien du champ scalaire homogène : (A.20) où f (x, y, z) = f0

∇2 f (x, y, z) = ∇2 f0 =
∂2f0
∂x2

+
∂2f0
∂y2

+
∂2f0
∂z2

= 0 (A.21)

Champ scalaire unidimensionnel : f (x, y, z) indépendant de y et z.

f (x, y, z) = f (x) (unidimensionnel) (A.10)

Laplacien du champ scalaire unidimensionnel : (A.20)
où f (x, y, z) = f (x)

∇2 f (x, y, z) = ∇2 f (x) =
d2f (x)

dx2
(unidimensionnel) (A.22)
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A.4 Théorème de la divergence
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A.4.1 Cube infinitésimal

Système local : cube de volume infinitésimal centré autour du point x
engendré par les vecteurs infinitésimaux orthogonaux dx1, dx2 et dx3.

dx 1

dx 2

dx 3

x 

1 Centres faces : avant (+) et arrière (−)

x± 1

2
dx1 = x± 1

2
dx1 x̂1 (A.23)

2 Centres faces : droite (+) et gauche (−)

x± 1

2
dx2 = x± 1

2
dx2 x̂2 (A.24)

3 Centres faces : supérieure (+) et inférieure (−)

x± 1

2
dx3 = x± 1

2
dx3 x̂3 (A.25)
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A.4.1 Cube infinitésimal

Volume : cube infinitésimal centré autour du point x

dV (x) = dx1 dx2 dx3 (A.26)

dx 1

dx 2

dx 3

x 

1 Surface faces : avant (+) et arrière (−)

dS

(
x± 1

2
dx1

)
= ± dS1 = ± dS1 x̂1 = ± dx2 dx3 x̂1 (A.27)

2 Surface faces : droite (+) et gauche (−)

dS

(
x± 1

2
dx2

)
= ± dS2 = ± dS2 x̂2 = ± dx3 dx1 x̂2 (A.28)

3 Surface faces : supérieure (+) et inférieure (−)

dS

(
x± 1

2
dx3

)
= ± dS3 = ± dS3 x̂3 = ± dx1 dx2 x̂3 (A.29)
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A.4.2 Flux infinitésimal

Flux total : le flux total du champ vectoriel f (x) à travers le cube
infinitésimal centré en x est la somme des flux à travers les six faces.

dx 1

dx 2

dx 3

x 

Flux total : du champ vectoriel f (x) à travers le cube infinitésimal.

f (x) · dS (x) = (A.30)

f

(
x+

1

2
dx1

)
· dS

(
x+

1

2
dx1

)
+ f

(
x− 1

2
dx1

)
· dS

(
x− 1

2
dx1

)
+ f

(
x+

1

2
dx2

)
· dS

(
x+

1

2
dx2

)
+ f

(
x− 1

2
dx2

)
· dS

(
x− 1

2
dx2

)
+ f

(
x+

1

2
dx3

)
· dS

(
x+

1

2
dx3

)
+ f

(
x− 1

2
dx3

)
· dS

(
x− 1

2
dx3

)
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A.4.2 Flux infinitésimal

dx 1

dx 2

dx 3

x 

Flux total : du champ vectoriel f (x) : (A.23) - (A.29) dans (A.30)

f (x) · dS (x) = (A.31)(
f

(
x+

1

2
dx1 x̂1

)
− f

(
x− 1

2
dx1 x̂1

))
· (dx2 dx3 x̂1)

+

(
f

(
x+

1

2
dx2 x̂2

)
− f

(
x− 1

2
dx2 x̂2

))
· (dx3 dx1 x̂2)

+

(
f

(
x+

1

2
dx3 x̂3

)
− f

(
x− 1

2
dx3 x̂3

))
· (dx1 dx2 x̂3)
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A.4.2 Flux infinitésimal

dx 1

dx 2

dx 3

x 

Développement limité : au 1 er ordre du champ vectoriel f autour de x

f

(
x± 1

2
dx1 x̂1

)
= f (x)± 1

2

∂f (x)

∂x1
dx1

f

(
x± 1

2
dx2 x̂2

)
= f (x)± 1

2

∂f (x)

∂x2
dx2 (A.32)

f

(
x± 1

2
dx3 x̂3

)
= f (x)± 1

2

∂f (x)

∂x3
dx3
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A.4.2 Flux infinitésimal

dx 1

dx 2

dx 3

x 

Flux total : champ vectoriel f (x) : (A.32) dans (A.31) donne (A.33)

f (x) · dS (x) =

(
∂f (x)

∂x1
· x̂1 +

∂f (x)

∂x2
· x̂2 +

∂f (x)

∂x3
· x̂3

)
dx1 dx2 dx3

Flux total : champ vectoriel f (x) = f1 (x) x̂1 + f2 (x) x̂2 + f3 (x) x̂3 :
(A.26) dans (A.33)

f (x) · dS (x) =

(
∂f1 (x)

∂x1
+

∂f2 (x)

∂x2
+

∂f3 (x)

∂x3

)
dx1 dx2 dx3

Flux total : remis en forme

f (x) · dS (x) =

(
3∑

i=1

∂fi (x)

∂xi

)
dV (x) (A.34)
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A.4.3 Théorème de la divergence

Flux total :

f (x) · dS (x) =

(
3∑

i=1

∂fi (x)

∂xi

)
dV (x) (A.34)

Divergence : du champ vectoriel f (x)

∇ · f (x) =
3∑

i=1

∂fi (x)

∂xi
(A.35)

Théorème local de la divergence : du champ vectoriel f (x) :
(A.35) dans (A.34)

f (x) · dS (x) =
(
∇ · f (x)

)
dV (x) (A.36)

Ce théorème est indépendant du choix de coordonnées (cartésiennes,
cylindriques ou sphériques), car il est exprimé en termes de produits
scalaires de vecteurs.
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A.4.3 Théorème de la divergence

Théorème global de la divergence : du champ vectoriel f (x) :
intégration de (A.36) sur le système global∫
S

f (x) · dS (x) =

∫
V

(
∇ · f (x)

)
dV (x) (A.37)

Flux total : l’intégration se fait sur l’ensemble du système global qui est
constitué d’un continuum de cubes de volume infinitésimal dV . Les flux à
travers toutes les faces des cubes à l’intérieur du système global
s’annulent deux à deux. Ainsi, seuls les flux à travers les faces des cubes
qui se trouvent sur l’enceinte du système contribuent au flux global.
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